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 In this paper, we introduce a Liferay plugin designed to enhance user interac-
tion. Our tool is specifically tailored for product managers and content editors 
who aim to leverage advanced artificial intelligence capabilities within their Lif-
eray portals. The plugin allows them to feed a large language model (LLM) with 
content from designated pages and files, creating a comprehensive text corpus. 
Users can input site-specific questions to an integrated interface and the sys-
tem then processes these queries by matching them against the pre-defined 
text tokens, delivering precise and contextually relevant answers. 

The architecture is built on a microservices architecture and uses Liferay 7.4 for 
the user interface and FastAPI for the backend services. Elasticsearch serves as 
a vector database for semantic search and document management.  
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Standard Semantic Search vs. Custom 
Retrieval-Augmented Generation  

The integrated semantic search and our retrieval-aug-
mented generation (RAG) plugin each offer unique ap-
proaches to information retrieval and processing. The 
standard semantic search uses natural language proces-
sing (NLP) and machine learning to understand the con-
text and meaning of search queries, taking into account 
synonyms, word variations, and semantic relationships 
between terms. This method employs algorithms for text 
analysis and processing to find relevant documents and 
information. A key advantage in comparison to a simple 
keyword-matching search is that it delivers more relevant 
results based on the context and meaning of the query, 
thereby enhancing the user experience with more accu-
rate and precise search results. It is particularly well-
suited for large datasets and diverse sources of infor-
mation. However, it can face limitations with very specific 
or complex queries, as the results still rely on existing doc-
uments and does not generate answers.12 

In comparison, our RAG approach combines in-
formation retrieval with text-generating AI models. This 
two-step process first finds relevant documents and then 

 
1  cb@fast-forward-it.de 

generates a coherent response. The retrieval model 
searches a database or corpus of documents, while the 
generation model uses the retrieved information to pro-
duce a coherent answer. RAG can provide very precise and 
specific answers by combining the best information from 
multiple sources, making it especially suitable for complex 
queries that require detailed and contextually relevant re-
sponses. However, it is more complex to implement, re-
quires more computational and data processing re-
sources, and the generation of responses can be more 
time-consuming. 

In terms of effectiveness, the semantic search is 
particularly effective for general information retrieval 
tasks, where a quick and relevant answer to a broad query 
is needed. RAG, on the other hand, is more effective for 
complex queries that require detailed and contextually 
rich answers, especially in dynamic environments or for 
specific questions. 

System Overview 

Our system comprises several key components, each play-
ing a vital role in providing a seamless experience for ed-
itors managing documents and for users interacting with 
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our customizable chatbot. The main components of our 
system (see figure 1) include: 

(1) Liferay 7.4: Serves as the user interface which allows 
editors to manage documents and users to interact 
with the developed chat portlet.  

(2) FastAPI Server: Provides three main endpoints for up-
loading and deleting documents and chatting. 

(3) MySQL: Stores uploaded documents. 
(4) Elasticsearch: Stores document snippets and their em-

beddings for semantic search. 
(5) Retrieval Augmented Generation (RAG): Combines 

search results from the vector database and generates 
answers with an LLM (Large Language Model). 

 
Figure 1: System Architecture 

Liferay 

Liferay 7.4 serves as a centralized user interface, enabling 
(1) content editors to upload and delete documents and 
(2) grant users to interact with a custom chat portlet. This 
chat portlet integrates with the RAG system, allowing users 
to receive intelligent responses generated from existing 
documents.  

Document uploads and deletions are tracked by 
a ModelListener, which interacts with the corresponding 
REST endpoints of the FastAPI server. 

 
 

FastAPI 

The FastAPI server is the backbone of our system, provid-
ing essential API endpoints that manage document up-
loads, deletions, and user interactions. Each endpoint is 
designed to perform specific tasks, ensuring a seamless 
integration between the front-end user interface and the 
underlying data management and processing systems. The 
FastAPI server consists of three main endpoints: 

(1) Upload API: The Upload API endpoint is responsible 
for handling the initial ingestion of documents into 
the system. When a user uploads a document, the API 
receives a unique FileID along with the file itself. The 
endpoint calculates an MD5 hash of the uploaded file, 
which serves as a checksum to ensure data integrity 
and uniqueness. Along with the file name, this hash is 
stored in a MySQL database, associating the FileID with 
these metadata attributes. This information is critical 
for managing the documents, pro-viding a reference 
for future operations such as retrieval or deletion. 
Once the file is received and its metadata is stored, the 
document is transmitted to the Retrieval Augmented 
Generation (RAG) system. Here, the file undergoes pro-
cessing to extract relevant snippets and embeddings. 

(2) Delete API: The Delete API endpoint handles the re-
moval of documents from the system. It receives a 
FileID corresponding to the document that needs to be 
deleted. The endpoint queries the MySQL database 
using the FileID to retrieve the associated meta-data, 
including the file name and other identifiers. Using 
this information, the system deletes the document en-
tries from both the MySQL database and Elasticsearch. 
Removing the entries from Elastic-search ensures that 
the document is no longer retrievable through the se-
mantic search, maintaining the accuracy and rele-
vance of the search results. This step is crucial for 
managing the lifecycle of documents, ensuring that 
outdated or irrelevant information is not available to 
users. 

(3) Chat API: The Chat API is the core interface for user in-
teractions. It receives natural language queries from 
users, which can range from simple factual questions 
to complex information requests. Upon receiving a 
query, the Chat API interacts with the RAG system to 
process the input. This involves using the semantic 
embeddings stored in Elasticsearch to find relevant 
document snippets that match the query’s intent. The 
RAG system combines the retrieved snippets with a 
Large Language Model (LLM), such as GPT-4o mini, to 
generate a comprehensive and contextually relevant 
response. [1] [2] 

Retrieval-Augmented Generation (RAG) 

The Retrieval-Augmented Generation (RAG) process is cen-
tral to delivering accurate and contextually appropriate 
responses to user queries in our system. [3] It involves a 
series of carefully orchestrated steps that transform raw 
document data into meaningful and retrievable informa-
tion. The process is divided into two main pipelines: (1) 
data preparation and (2) data retrieval, followed by the 
text generation of the overall answer. Each step utilizes 
advanced technologies and methodologies to ensure 
quality results.  



(1) Data Preparation Pipeline: The Data Preparation Pipe-
line is responsible for processing and structuring the 
webcontents and uploaded documents to make them 
suitable for efficient retrieval and search operations. 
This pipeline includes the following steps: (a) File-
handler: The file handler acts as the initial point of 
contact for uploaded documents. It identifies the doc-
ument type (such as text, audio, video, imagery, struc-
tured data, markup, source code etc.) and selects the 
appropriate processing pipeline. Non-text content will 
be transcribed beforehand. Using Langchain's Seman-
ticChunker, [4] [5] the document is broken down into 
smaller, semantically coherent chunks. This chunking 
is crucial for ensuring that each segment of text can 
be individually understood and indexed, allowing for 
a more precise retrieval during searches. Semantic 
chunking helps in capturing the meaning of different 
parts of the document, which can vary significantly, es-
pecially in long or complex documents. (b) Embed-
ding: After chunking, each text segment is embedded 
using OpenAI's text-embedding-3-large model. This 
model converts each text into high-dimensional vec-
tors that encapsulate the semantic meaning of the 
chunks. These embeddings are essential for semantic 
search, as they allow the system to understand and 
match the meaning behind words and phrases, rather 
than just their literal text. (c) Storage: The embed-
dings, along with the original text and associated 
metadata (such as document ID, source, and chunk lo-
cation), are stored in a vector database – Elasticsearch 
in this case. Storing both the embeddings and the 
original text enables the system to not only perform 
semantic searches but also to retrieve and display the 
exact snippets of text that are most relevant to the us-
er's query.  

(2) Retrieval Pipeline: The Retrieval Pipeline is activated 
when a user submits a query. It is designed to find and 
rank the most relevant document snippets from the 
database and includes the following steps: (a) Query 
Rewriting: Using GPT-4o mini first multiple variations 
of the single user query are generated. Each variation 
represents a different perspective that might focus on 
related but distinct aspects or use different terminol-
ogy. (b) Embedding: The generated queries are em-
bedded using the same text-embedding-3-large 
model. The embeddings represent the semantic con-
tent of the queries, facilitating the matching process 
with the document embeddings stored in the data-
base. (c) Similarity search: The embedded queries are 
compared against the document embeddings in Elas-
ticsearch. This search identifies the most semantically 
similar document chunks, typically retrieving the most 
relevant documents or snippets. The similarity search 
leverages the high-dimensional vector space to find 
documents that best match the meaning of the que-
ries, rather than just the specific words used. The 
unique union of all the documents is then used to cre-
ate a larger, more comprehensive set of potentially 
relevant webcontents and documents (c) Keyword 
search: Concurrently, GPT-4o mini is employed to ex-
tract keywords from the user's query. These keywords 
are then used to perform a more traditional keyword-
based search within the vector database. The keyword 
search complements the similarity search by ensuring 
that specific, potentially crucial terms are not over-
looked, especially when they are directly relevant to 
the user's intent. (d) Reciprocal rank function: The re-
sults from the similarity search and the keyword 
search are combined using a method known as 

Reciprocal Rank Fusion (RRF). This technique merges 
the ranked lists from both search methods to produce 
a single, optimized ranking. RRF enhances the final 
ranking by balancing the strengths of both search ap-
proaches. It increases the precision and relevance of 
the retrieved documents by considering both seman-
tic context and specific keyword matches. (e) Answer 
generation: The top-ranked document snippets, as de-
termined by the RRF method, are provided as context 
to a Large Language Model (LLM), specifically GPT-4o 
mini. GPT-4o mini uses this context to generate a com-
prehensive and relevant answer to the user query. The 
model synthesizes information from the provided 
snippets, producing a response that is not only accu-
rate but also nuanced and detailed. 

The modularity of the process, particularly with the use of 
Elasticsearch and separate pipelines for embedding and 
retrieval, ensures that the system can handle large vol-
umes of data and queries efficiently. The object-oriented 
implementation allows us to adapt each individual pro-
cessing step with ease and replace used methods and 
models at a later time to ensure a state-of-the-art solu-
tion. For example, instead of using the cloud-based GPT-
4o mini model, on premise a Lama3 model can be em-
ployed quickly to ensure that sensitive webcontents and 
documents are processed within the company. 

 
Figure 2: Retrieval Pipeline 

Technology Stack 

The used technology stack integrates various program-
ming languages, databases, and machine learning 



models to create a robust system for handling document 
metadata, content retrieval, and automated answer gen-
eration. 

(1) Programming Languages: (a) Python 3.10 is the latest 
version of Python, known for its simplicity and reada-
bility. It is used in conjunction with FastAPI, a modern 
web framework for building APIs with Python. FastAPI 
is chosen for its speed, ease of use and support for 
asynchronous programming, making it suitable for 
high-performance applications. 

(2) Databases: (a) MySQL is a widely used relational da-
tabase management system. In this setup, MySQL 8 is 
employed to store document metadata, which in-
cludes details like document titles, authors, dates, 
and other relevant information. (b) Elasticsearch is a 
highly scalable open-source search and analytics en-
gine. Version 8.8 is used as a vector database in this 
stack, storing and querying document snippets along 
with their embeddings. It enables quick retrieval of 
relevant document snippets. 

(3) Machine Learning Models: (a) Text-embedding-3-large: 
This model is used to convert text into high-dimen-
sional vectors (embeddings) that capture the seman-
tic information of the indexed content. (b) GPT-4o 
mini: GPT-4o mini is utilized to extract keywords from 
documents, which can help in summarizing content, 
tagging, and improving search relevance. It is also 
used for generating coherent and contextually appro-
priate final answers. It takes the output from previous 
components (e.g. relevant document snippets and 
keywords) and crafts detailed, context-aware answers. 

Conclusion 

We have presented a Liferay plugin specifically designed 
to enhance user interaction and information retrieval. The 
architecture is built on a microservices framework, utiliz-
ing Liferay 7.4 for the user interface and FastAPI for 
backend services. Elasticsearch serves as a vector data-
base, facilitating semantic search and efficient document 
management. The clear separation of tasks ensures a scal-
able and maintainable solution, while the use of modern 
technologies and advanced machine learning models pro-
vides a powerful and intelligent interaction with the 
stored webcontents and documents. 

From an operational perspective our plugin of-
fers several key benefits: it significantly improves user en-
gagement by providing instant, accurate responses, deliv-
ers timely and relevant information without the need for 
manual searches, and reduces the workload on support 
teams by handling common questions efficiently. This al-
lows support staff to focus on more complex issues, opti-
mizing resource allocation and improving overall effi-
ciency. 
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