
Fast Forward IT GmbH (2024)

 Available online at www.fast-forward-it.de/

Company homepage: www.ffit.gmbh

Enhancing User Interaction with Artificial Intelligence

A Liferay Plugin for Large Language Model Integration

Chris Börgermann1, Kaan Erbay2
Fast Forward IT GmbH, Großenbaumer Weg 8, D-40472 Düsseldorf, Germany

ARTICLE INFO ABSTRACT

Article history:

Version 1.0
Published 11 November 2024

 In this paper, we introduce a Liferay plugin designed to enhance user interac-
tion. Our tool is specifically tailored for product managers and content editors
who aim to leverage advanced artificial intelligence capabilities within their Lif-
eray portals. The plugin allows them to feed a large language model (LLM) with
content from designated pages and files, creating a comprehensive text corpus.
Users can input site-specific questions to an integrated interface and the sys-
tem then processes these queries by matching them against the pre-defined
text tokens, delivering precise and contextually relevant answers.

The architecture is built on a microservices architecture and uses Liferay 7.4 for
the user interface and FastAPI for the backend services. Elasticsearch serves as
a vector database for semantic search and document management.

Keywords:

Liferay DXP
Artificial Intelligence
Large Language Model
Retrieval-Augmented Generation
Semantic Search

Standard Semantic Search vs. Custom
Retrieval-Augmented Generation

The integrated semantic search and our retrieval-aug-
mented generation (RAG) plugin each offer unique ap-
proaches to information retrieval and processing. The
standard semantic search uses natural language proces-
sing (NLP) and machine learning to understand the con-
text and meaning of search queries, taking into account
synonyms, word variations, and semantic relationships
between terms. This method employs algorithms for text
analysis and processing to find relevant documents and
information. A key advantage in comparison to a simple
keyword-matching search is that it delivers more relevant
results based on the context and meaning of the query,
thereby enhancing the user experience with more accu-
rate and precise search results. It is particularly well-
suited for large datasets and diverse sources of infor-
mation. However, it can face limitations with very specific
or complex queries, as the results still rely on existing doc-
uments and does not generate answers.12

In comparison, our RAG approach combines in-
formation retrieval with text-generating AI models. This
two-step process first finds relevant documents and then

1 cb@fast-forward-it.de

generates a coherent response. The retrieval model
searches a database or corpus of documents, while the
generation model uses the retrieved information to pro-
duce a coherent answer. RAG can provide very precise and
specific answers by combining the best information from
multiple sources, making it especially suitable for complex
queries that require detailed and contextually relevant re-
sponses. However, it is more complex to implement, re-
quires more computational and data processing re-
sources, and the generation of responses can be more
time-consuming.

In terms of effectiveness, the semantic search is
particularly effective for general information retrieval
tasks, where a quick and relevant answer to a broad query
is needed. RAG, on the other hand, is more effective for
complex queries that require detailed and contextually
rich answers, especially in dynamic environments or for
specific questions.

System Overview

Our system comprises several key components, each play-
ing a vital role in providing a seamless experience for ed-
itors managing documents and for users interacting with

2 ke@fast-forward-it.de

file:///C:/Users/Erik/Documents/www.ffit.gmbh
http://www.ffit.gmbh

our customizable chatbot. The main components of our
system (see figure 1) include:

(1) Liferay 7.4: Serves as the user interface which allows
editors to manage documents and users to interact
with the developed chat portlet.

(2) FastAPI Server: Provides three main endpoints for up-
loading and deleting documents and chatting.

(3) MySQL: Stores uploaded documents.
(4) Elasticsearch: Stores document snippets and their em-

beddings for semantic search.
(5) Retrieval Augmented Generation (RAG): Combines

search results from the vector database and generates
answers with an LLM (Large Language Model).

Figure 1: System Architecture

Liferay

Liferay 7.4 serves as a centralized user interface, enabling
(1) content editors to upload and delete documents and
(2) grant users to interact with a custom chat portlet. This
chat portlet integrates with the RAG system, allowing users
to receive intelligent responses generated from existing
documents.

Document uploads and deletions are tracked by
a ModelListener, which interacts with the corresponding
REST endpoints of the FastAPI server.

FastAPI

The FastAPI server is the backbone of our system, provid-
ing essential API endpoints that manage document up-
loads, deletions, and user interactions. Each endpoint is
designed to perform specific tasks, ensuring a seamless
integration between the front-end user interface and the
underlying data management and processing systems. The
FastAPI server consists of three main endpoints:

(1) Upload API: The Upload API endpoint is responsible
for handling the initial ingestion of documents into
the system. When a user uploads a document, the API
receives a unique FileID along with the file itself. The
endpoint calculates an MD5 hash of the uploaded file,
which serves as a checksum to ensure data integrity
and uniqueness. Along with the file name, this hash is
stored in a MySQL database, associating the FileID with
these metadata attributes. This information is critical
for managing the documents, pro-viding a reference
for future operations such as retrieval or deletion.
Once the file is received and its metadata is stored, the
document is transmitted to the Retrieval Augmented
Generation (RAG) system. Here, the file undergoes pro-
cessing to extract relevant snippets and embeddings.

(2) Delete API: The Delete API endpoint handles the re-
moval of documents from the system. It receives a
FileID corresponding to the document that needs to be
deleted. The endpoint queries the MySQL database
using the FileID to retrieve the associated meta-data,
including the file name and other identifiers. Using
this information, the system deletes the document en-
tries from both the MySQL database and Elasticsearch.
Removing the entries from Elastic-search ensures that
the document is no longer retrievable through the se-
mantic search, maintaining the accuracy and rele-
vance of the search results. This step is crucial for
managing the lifecycle of documents, ensuring that
outdated or irrelevant information is not available to
users.

(3) Chat API: The Chat API is the core interface for user in-
teractions. It receives natural language queries from
users, which can range from simple factual questions
to complex information requests. Upon receiving a
query, the Chat API interacts with the RAG system to
process the input. This involves using the semantic
embeddings stored in Elasticsearch to find relevant
document snippets that match the query’s intent. The
RAG system combines the retrieved snippets with a
Large Language Model (LLM), such as GPT-4o mini, to
generate a comprehensive and contextually relevant
response. [1] [2]

Retrieval-Augmented Generation (RAG)

The Retrieval-Augmented Generation (RAG) process is cen-
tral to delivering accurate and contextually appropriate
responses to user queries in our system. [3] It involves a
series of carefully orchestrated steps that transform raw
document data into meaningful and retrievable informa-
tion. The process is divided into two main pipelines: (1)
data preparation and (2) data retrieval, followed by the
text generation of the overall answer. Each step utilizes
advanced technologies and methodologies to ensure
quality results.

(1) Data Preparation Pipeline: The Data Preparation Pipe-
line is responsible for processing and structuring the
webcontents and uploaded documents to make them
suitable for efficient retrieval and search operations.
This pipeline includes the following steps: (a) File-
handler: The file handler acts as the initial point of
contact for uploaded documents. It identifies the doc-
ument type (such as text, audio, video, imagery, struc-
tured data, markup, source code etc.) and selects the
appropriate processing pipeline. Non-text content will
be transcribed beforehand. Using Langchain's Seman-
ticChunker, [4] [5] the document is broken down into
smaller, semantically coherent chunks. This chunking
is crucial for ensuring that each segment of text can
be individually understood and indexed, allowing for
a more precise retrieval during searches. Semantic
chunking helps in capturing the meaning of different
parts of the document, which can vary significantly, es-
pecially in long or complex documents. (b) Embed-
ding: After chunking, each text segment is embedded
using OpenAI's text-embedding-3-large model. This
model converts each text into high-dimensional vec-
tors that encapsulate the semantic meaning of the
chunks. These embeddings are essential for semantic
search, as they allow the system to understand and
match the meaning behind words and phrases, rather
than just their literal text. (c) Storage: The embed-
dings, along with the original text and associated
metadata (such as document ID, source, and chunk lo-
cation), are stored in a vector database – Elasticsearch
in this case. Storing both the embeddings and the
original text enables the system to not only perform
semantic searches but also to retrieve and display the
exact snippets of text that are most relevant to the us-
er's query.

(2) Retrieval Pipeline: The Retrieval Pipeline is activated
when a user submits a query. It is designed to find and
rank the most relevant document snippets from the
database and includes the following steps: (a) Query
Rewriting: Using GPT-4o mini first multiple variations
of the single user query are generated. Each variation
represents a different perspective that might focus on
related but distinct aspects or use different terminol-
ogy. (b) Embedding: The generated queries are em-
bedded using the same text-embedding-3-large
model. The embeddings represent the semantic con-
tent of the queries, facilitating the matching process
with the document embeddings stored in the data-
base. (c) Similarity search: The embedded queries are
compared against the document embeddings in Elas-
ticsearch. This search identifies the most semantically
similar document chunks, typically retrieving the most
relevant documents or snippets. The similarity search
leverages the high-dimensional vector space to find
documents that best match the meaning of the que-
ries, rather than just the specific words used. The
unique union of all the documents is then used to cre-
ate a larger, more comprehensive set of potentially
relevant webcontents and documents (c) Keyword
search: Concurrently, GPT-4o mini is employed to ex-
tract keywords from the user's query. These keywords
are then used to perform a more traditional keyword-
based search within the vector database. The keyword
search complements the similarity search by ensuring
that specific, potentially crucial terms are not over-
looked, especially when they are directly relevant to
the user's intent. (d) Reciprocal rank function: The re-
sults from the similarity search and the keyword
search are combined using a method known as

Reciprocal Rank Fusion (RRF). This technique merges
the ranked lists from both search methods to produce
a single, optimized ranking. RRF enhances the final
ranking by balancing the strengths of both search ap-
proaches. It increases the precision and relevance of
the retrieved documents by considering both seman-
tic context and specific keyword matches. (e) Answer
generation: The top-ranked document snippets, as de-
termined by the RRF method, are provided as context
to a Large Language Model (LLM), specifically GPT-4o
mini. GPT-4o mini uses this context to generate a com-
prehensive and relevant answer to the user query. The
model synthesizes information from the provided
snippets, producing a response that is not only accu-
rate but also nuanced and detailed.

The modularity of the process, particularly with the use of
Elasticsearch and separate pipelines for embedding and
retrieval, ensures that the system can handle large vol-
umes of data and queries efficiently. The object-oriented
implementation allows us to adapt each individual pro-
cessing step with ease and replace used methods and
models at a later time to ensure a state-of-the-art solu-
tion. For example, instead of using the cloud-based GPT-
4o mini model, on premise a Lama3 model can be em-
ployed quickly to ensure that sensitive webcontents and
documents are processed within the company.

Figure 2: Retrieval Pipeline

Technology Stack

The used technology stack integrates various program-
ming languages, databases, and machine learning

models to create a robust system for handling document
metadata, content retrieval, and automated answer gen-
eration.

(1) Programming Languages: (a) Python 3.10 is the latest
version of Python, known for its simplicity and reada-
bility. It is used in conjunction with FastAPI, a modern
web framework for building APIs with Python. FastAPI
is chosen for its speed, ease of use and support for
asynchronous programming, making it suitable for
high-performance applications.

(2) Databases: (a) MySQL is a widely used relational da-
tabase management system. In this setup, MySQL 8 is
employed to store document metadata, which in-
cludes details like document titles, authors, dates,
and other relevant information. (b) Elasticsearch is a
highly scalable open-source search and analytics en-
gine. Version 8.8 is used as a vector database in this
stack, storing and querying document snippets along
with their embeddings. It enables quick retrieval of
relevant document snippets.

(3) Machine Learning Models: (a) Text-embedding-3-large:
This model is used to convert text into high-dimen-
sional vectors (embeddings) that capture the seman-
tic information of the indexed content. (b) GPT-4o
mini: GPT-4o mini is utilized to extract keywords from
documents, which can help in summarizing content,
tagging, and improving search relevance. It is also
used for generating coherent and contextually appro-
priate final answers. It takes the output from previous
components (e.g. relevant document snippets and
keywords) and crafts detailed, context-aware answers.

Conclusion

We have presented a Liferay plugin specifically designed
to enhance user interaction and information retrieval. The
architecture is built on a microservices framework, utiliz-
ing Liferay 7.4 for the user interface and FastAPI for
backend services. Elasticsearch serves as a vector data-
base, facilitating semantic search and efficient document
management. The clear separation of tasks ensures a scal-
able and maintainable solution, while the use of modern
technologies and advanced machine learning models pro-
vides a powerful and intelligent interaction with the
stored webcontents and documents.

From an operational perspective our plugin of-
fers several key benefits: it significantly improves user en-
gagement by providing instant, accurate responses, deliv-
ers timely and relevant information without the need for
manual searches, and reduces the workload on support
teams by handling common questions efficiently. This al-
lows support staff to focus on more complex issues, opti-
mizing resource allocation and improving overall effi-
ciency.

REFERENCES

[1] Dodgson, J., Lin, N., Peh, J., Rafhael, A., Pattirane, J.
Alhajir, A.D., Dinartho, E.D., Lim, J. and Ahmad, S.D.
(2023) Establishing Performance Baselines in Fine-
Tuning, Retrieval-Augmented Generation and Soft-
Prompting for Non-Specialist LLM Users

[2] Chen, J., Lin, H., Han, X. and Sun, L. (2024) Benchmark-
ing Large Language Models in Retrieval-Augmented

Generation, in: Proceedings of the 38th AAAI Confer-
ence on Artificial Intelligence, p. 17754-17762

[3] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukin V.,
Goyal, N., Küttler, H. Lewis, H., Yih, W., Rocktäschel, T.,
Riedel, S. and Kiela, D. (2020) Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks, in:
Proceedings of the 34th International Conference on
Neural Information Processing, p. 9459-9474

[4] Topsakal, O. and Akinci, T. C. (2023) Creating Large
Language Model Applications Utilizing LangChain: A
Primer on Developing LLM Apps Fast, in: Proceedings
of the International Conference on Applied Engineer-
ing and Natural Sciences, p. 1050-1056

[5] Nakhod, O. (2023) Using Retrieval-Augmented Genera-
tion to Elevate Low-Code Developer Skills, in: Artifi-
cial Intelligence, No. 3, p. 126-130

